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An analysis of the experimentally determined resonant amplitude and frequen- 
cies of oscillation of a gyroscope whose rotor contains liquid-filled cylindrical 
cavities reveals a surprising small amplitude instability region that is not pre- 
dicted by the Stewartson instability criterion for a liquid-filled spinning top. 
Along with the experimental results and speculation concerning the cause of 
the observed phenomenon, there are presented some practical implications of the 
observations of use to designers of spinning vehicles containing liquid. 

1. Introduction 
Experiments with a liquid-filled gyroscope by Karpov (1 965) verify Stewart- 

son’s (1959) linear stability criterion for a liquid-filled top. However, more recent 
experiments conducted a t  the Ballistics Research Laboratory with a liquid-filled 
gyroscope indicate that the Stewartson analysis can predict the amplification 
rate of the gyroscope correctly only if the amplitude of motion does not exceed 
about one degree. For gyroscopic motion with an amplitude exceeding that value, 
the Stewartson linear theory not only does not predict the observed amplification 
rate, but also may fail completely to predict the observed instability. The in- 
stability of the gyroscope that is observed at  the larger amplitudes seems to be 
amplitude dependent. 

2. The gyroscope and the experiments 
The gyroscope with its liquid-filled rotor and auxiliary equipment is shown in 

figure 1 (plate 1). The centre of gravity of the device is maintained at  the gimbal 
axis in order to suppress the precessional (slow) mode of oscillation; hence, the 
gyroscope is really a gyrostat. The resulting circular motion is defined as nutation, 
the frequency of which we label r,, after non-dimensionalization with respect to 
the constant spin 0 of the rotor. For the gyrostat, then, r,, is simply the ratio 
of its axial moment of inertia to its transverse moment of inertia. raj, a dimension- 
less eigenfrequency of the inertial wave motion in the uniformly spinning, 
inviscid, incompressible liquid in the rotor cavity, depends, as Stewartson showed, 
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FIGURE 2. Representative plot of amplitude of motion of gyroscope in degrees versus time 
in seconds a t  resonance. Cavity heightlcavity radius = 3.09, kinematic viscosity = 10 centi- 
stokes, angular speed = 6000 r.p.m., cavity completely filled. 

only on the percentage of liquid in the cavity and the ratio of the cavity height 
2c to the cavity diameter 2a. Stewartson also showed that when the system is 
sufficiently close to a state of resonance, i.e. when rnU is sufficiently close to rnj, 
the gyrostat will become unstable, and when rnj = r,, the amplification rate of 
the gyrostat will be a maximum. Hence, our experimental procedure for de- 
termining any particular eigenfrequency of the liquid involves varying the 
nutational frequency of the gyroscope until its amplification rate is a maximum 
(the subsequent correct inference that the nutational frequency of the gyrostat 
is then also an inertial wave frequency has been profusely documented else- 
where). This variation in r,, is accomplished by varying the moments of inertia 
of the rotor by adding brass rings of various masses (figure 1). 

The gyrostat, which differs radically from the top used by Stewartson, is 
driven by a $ h.p. d.c. motor, and is unique in that its gimbals have flexure pivots 
(figure 1, lower left-hand corner) that consist of circular, crossed, spring leaves, 
so constructed that while half of the unit rotates about a central axis the other 
half remains motionless. The transverse displacement and hysteresis associated 
with this motion are negligible. Measurements of angular displacements of the 
axis of the gyrostat are made by strain gauges cemented to one of the pivot spring 
leaves, these strain gauges forming part of a bridge circuit whose output is 
amplified and continuously plotted as a function of time as shown in figure 2. 

Since the natural frequencies of the liquid are functions of the percentage of 
liquid in the cavity, one can also search for maximum amplification (and hence 
resonance, and hence an eigenfrequency of the liquid) by keeping the nutationai 
frequency of the gyrostat constant while varying the amount of liquid in the 
ca>vity. Since cavities of various dimensions can be placed in the rotor of the 
gyrostat, one can generate an infinity of response curveslike that shownin figure 2. 
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FIGURE 3. Semi-log plot of normalized amplitude of motion of gyrostat at resonance versus 
time in seconds. Cavity height = 7.817 in., cavity diameter = 2.50 in., angular speed 
= 3000 r.p.m., oavity completely filled. 

One obtains an amplitude growth rate from these plots by measuring the 
amplitude A (normalized with respect to a convenient initial amplitude of the 
gyrostat A,) a t  several different instants and then plotting these amplitudes as 
functions of time on semi-log paper. If the points lie on a straight line,? the slope 
of this straight line is the linear amplitude growth rate. An example of the result 
of this process is shown in figure 3. Note there, however, that the points lie on 
a straight line only for a time of about 20 s: afterwards, the growth rate seems 
to be nonlinearly time dependent, a fact that one easily translates into the growth 
rate being amplitude dependent. This latter amplitude dependence of the growth 
rate is not predicted by the Stewartson analysis. 

Figure 4 shows a typical resonance ourve for our gyrostat a t  very small 
amplitudes, e.g. about 1" (and hence characterized by the Stewartson amplitude- 
independent amplification or growth rate). The theoretical curve was plotted by 
using Stewartson's (1959) tables; the experimental curve was obtained by varying 
T,, while keeping the percentage of liquid and the cavity geometry fixed. The 
approximately 2 %  difference between the abscissae of the peaks of the two 

t This is so if the amplitude grows as exp (at), where cc is the amplification or growth 
rate and t is time. 
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FIGURE 4. Resonance curve : amplitude growth rate versus dimensionless nutational 
frequency. Cavity height = 7.48 in., cavity diameter = 2.48 in., angular speed = 5000 
r.p.m., cavity completely filled, dimensionless inertial wave frequency = 0,053. , 
gyrostat ; - , Stewartson’s theory. 

curves in the figure is an example of the excellent agreement between the pre- 
dictions of the Stewartson analysis and our experiments. The agreement is even 
more remarkable in view of the facts that the variation obtainable in r,, was 
only in discrete steps of 0.001 (around 2 % of the resonance value-we did not have 
an infinite set of brass rings !), and that the level of amplification changes very 
rapidly in the vicinity of r,, = rni for small changes in r,,, i.e. the resonance 
bandwidth here is very narrow. Indeed, Stewartson’s tables show how critically 
rni depends on the ratio of height to diameter for our particular cavity, a 1 yo 
change in diameter producing a 10 % change in rnj (if rnj were greater than 0.25, 
its sensitivity to the height-to-diameter ratio would be less, but our gyrostat 
was not capable of operating at such high frequencies). Hence, the experiments 
had to be performed with extreme care. 

We now consider in more detail the amplitude-dependent behaviour depicted 
in figure 3. Since we used both partially and completely filled cavities, the pro- 
cedure for obtaining resonance involved successively incrementing r,, and then 
running the gyrostat at large amplitudes to determine the large amplitude growth 
rate. To determine whether the large amplitude growth rates were due to 
viscosityper se, we used liquids of different kinematic viscosities and repeated the 
experiments at  the larger amplitudes a t  which the amplitude-dependent growth 
rate appeared. An example of the amplitude-dependent resonance curves is shown 
in figure 5 ,  and the effect of viscosity can be ascertained by comparing the curves 
for the liquids of different viscosity. Note there, also, that the small amplitude 
maximum amplification occurred around a nutational frequency of 0.056, whereas 
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FIGURE 5. Resonance curves : amplitude-dependent (solid symbols) and amplitude- 
independent (open symbols) growth rates versus frequency. Cavity diameter = 2.50 in., 
cavity height = 7.48in., angular speed = 5000r.p.m., percentage of liquid = 79. 0, 
1 centistoke oil; 0, 13 centistoke oil. 

for the larger amplitudes, maximum amplification occurred at a nutational 
frequency of about 0.064. Making the reasonable assumption that for large 
amplitude motion also rni = r,, when maximum amplification occurred, then, 
since maximum undamping occurred at  a different value of r,,, one concludes 
that the characteristic frequency of oscillation of the liquid at  the larger ampli- 
tudes is different from what it was at the smaller amplitude. Hence, the fre- 
quencies are amplitude dependent. Furthermore, from the qualitative similarity 
of the two curves for the liquids of different kinematic viscosity, it  follows that 
viscosity per se is not the cause of the amplitude-dependent growth rate (the 
incompleteness of the amplitude-dependent curve is due to the restriction of the 
amplitude of the motion of the gyrostat to around So, this restriction being due 
partially to physical constraints and partially to the necessity of precluding 
possible resonance with any of the mechanical vibrations of the supposedly rigid 
supports). 

The above procedure for generating the curves shown in figure 5 is a time- 
consuming one, for varying r,, by changing the brass rings on the rotor is tedious. 
An alternative procedure for obtaining resonance simply involves changing the 
amount of liquid in the cavity. This can be done while the gyroscope is spinning. 
Since the natural frequencies of the liquid depend on its geometry, i.e. the per- 
centage present, this adjustment of the volume changes these eigenfrequencies 
without measurably altering the nutational frequency rn,. Thus, keeping T,, 
constant while adjusting the amount of liquid, one can easily shift the frequencies 
of the liquid closer to the nutational frequency. This procedure has two distinct 
advantages over obtaining resonance by altering the moments of inertia t o  

48-2 
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FIGURE 6. Amplitude-dependent (solid symbols) and amplitude-independent (open 
symbols) growth rates and ‘break angles’ versus percentage of liquid. Cavity diameter 
= 2.50 in., cavity height = 7.48 in., angular speed = 5000 r.p.m., nutational frequency 
T,, = 0.056. 0, water; 0, 5 centistoke oil. 

adjust rnu: (i) it is a simple operation; (ii) it leads to results that answer the ques- 
tion whether or not the amplitude-dependent behaviour of the growth rate is 
caused solely by the free surface. 

For similar amplitude levels prescribed by previous tests wherein we obtained 
resonance by varying r,,, we show in figure 6 the resonance curves obtained by 
adjusting the volume of liquid. Also included in figure 6 are the ‘break angles’ 
(those nebulous values of the amplitude of the gyroscope below which the growth 
rate does not depend on the amplitude, but above which the growth rate does 
depend on the amplitude). Note that the resonance curves from these experiments 
are qualitatively similar to the curves in figure 5 in that the eigenfrequencies and 
amplification rates at  the large amplitudes are different from those a t  the smaller 
amplitudes (the repeatability of the experiments, along with the complete 
absence of any hysteresis, was most reassuring). 

In  figure 6, the displacement between the two resonance peaks for liquids of 
different viscosity is consistent with the effect of viscosity (Karpov 1965), i.e. 
viscosity increases the resonant frequencies (which corresponds to decreasing the 
percentage of liquid) and depresses the amplitude of the gyroscopic motion (at 
resonance) from that for a liquid of lower viscosity. Note here, also, from the 
‘break angle’ plot, that the region of overlap around the 82 % fill value seems to 
indicate that an increase in viscosity delays the onset of the amplitude-dependent 
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FIGURE 7. Amplitude-dependent (solidsymbols) and amplitude-independent (open symbols) 
growth rates versus nutational frequency. Cylinder diameter = 2.48 in., cylinder height 
= 7.817 in., angular speed = 5000 r.p.m., cylinder completely filled with I centistoke oil. 

response; that is, the 'break angle' for water (kinematic viscosity = 0.01 stokes) 
is about lo whereas the 'break angle' for oil (kinematic viscosity = 0.05 stokes) 
is about 2". We shall return to this important fact in the discussion. 

That the amplitude-dependent response is not caused solely by the action of 
the free surface in a partially filled, uniformly rotating cylinder is revealed by 
comparing figures 5-7. Figure 7 shows the amplitude-independent and amplitude- 
dependent response curves for our gyrostat with a completely filled cylindrical 
cavity. The curves were generated by varying rnu. Figures 5 and 6 are for partially 
filled cavities and were generated by varying r,, and rnj respectively. The fact 
that all three figures exhibit the amplitude-dependent response seems to indicate 
that something more basic than the relative freedom of motion of a free surface 
is causing the effect. 

3. Discussion 
The Stewartson analysis does correctly predict the eigenfrequencies and 

amplification rates for our gyrostat when its amplitude of motion is no more than 
about lo. Hence, we search for the reason his analysis fails at  larger amplitudes 
by examining the simplifications he made on the governing partial differential 
equation, the Navier-Stokes equati0n.t He lowered the order of the equation 
by neglecting the viscous term, linearized it by neglecting the nonlinear term, 
and simplified the analysis by assuming that the axial spin 8 of the liquid always 

t This phenomenon is not just a large amplitude effect due solely to the gyrostat, 
for it is not observed if one operates the gyrostat a t  these large amplitudes either while 
it is empty or while it is filled with a solid of the same density as the liquid. 
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remained collinear with the axial spin of the gyrostat. Since we have already 
dismissed viscosity as a cause, it follows, then, that the amplitude-dependent 
response must be associated with the nonlinear convective term in the Navier- 
Stokes equation and/or the non-collinearity of the two spin vectors. It would not 
seem an unreasonable effort to examine the dynamic effect of the interaction, 
via this nonlinear term,? of two different modes of the inertial wave frequency 
spectrum, particularly the Rossby-type mode that can arise from the non- 
collinearityl of the two axial spin vectors mentioned above. If this were the 
mechanism for the amplitude-dependent response, then the previously mentioned 
effect of viscosity in delaying the amplitude-dependent response to larger angles 
could be understood in terms of viscosity tending to keep the two spin vectors 
aligned for longer. 

The significant result of the investigation, from a utilitarian standpoint, comes 
from an examination of figures 5-7. If one is concerned about dynamic stability 
problems for a spinning liquid-filled body executing gyroscopic motion, and the 
amount of liquid can be varied, then, to avoid the spurious resonance regime, 
one should use an amount of liquid less than the amount that would be in 
a ‘Stewartson’ resonance a t  small amplitudes. If the amount of liquid cannot be 
changed and one wishes to avoid the spurious large amplitude response by 
changing rnU, one should change the design of the body so that it has a nutational 
frequency lower than the ‘ Stewartson’ resonant frequency of the liquid. 
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There is a fluid dynamical instability theory of nonlinear oscillations (Stuart 1971) 
that predicts, for the fundamental mode of the oscillations, that the amplitude A of the 
oscillations is time dependent and satisfies dlAI2/dt = ~t,(A1~+cc,lA1~, where u1 and u, 
are constants. This equation, however, does not allow for, or describe, wave propagation, 
whereas the effect we are observing (the growth in amplitude of the gyroscopic motion of 
the rigid body containing the liquid) is due to the interaction between the inertial waves 
in the liquid and the oscillatory motion of the gyrostat. This difference may or may not 
explain our inability to correlate Stuart’s result with our experiments. 
1 Greenspan (1968, p. 86) shows that Rossby waves ca.n occur in a sliced-off cylinder. 

If the spin vector of the liquid in the cavity is not always aligned with the spin vector of 
the rotor, the liquid sees, effectively, a sliced-off cylinder, and Rossby waves should coexist 
with the ordinary inertial waves. 




